Wednesday, 5 August 2015

Bresenham’s Circle Generation Algorithm in Computer Graphics


This algorithm is used to generate only one octant of the circle. The other parts are obtained by successive reflections.


This illustrated in figure. If the first octant ( 0 to 45¬o CCW) is generated, the second 
      octant is obtained by reflection through the line y  = x to yield the first quadrant.
The results in the first quadrant are reflected through the line x = 0 to obtain those in  
      the 2nd quadrant.
The combined results in the upper semi circle are reflected through the line y = 0 to 
      complete the circle.


To derive Bresenham’s circle generation algorithm, consider the first quadrant of an 
      origin centered circle. Notice that if the algorithm begins at x =0 , y =r then for   
      clockwise generation of the circle y is monotonically decreasing function of x in the  
      first quadrant. 

Similarly, if the algorithm begins at y =0 , x=R then for counter clock wise generation 
      of the circle x is a monotonically decreasing function of y. Here clockwise generation        
      starting at x=0, y=R is chosen.
The center of the circle and the starting point are both assumed located precisely at 
      pixel element.

Algorithm:

Bresenham’s incremental circle algorithm for the first quadrant all variables are assumed integer.

Initialize the variables.
      xi = 0;
yi = R;
     ri = 2(1-R)
                  Limit =0
while yi ≥ Limit
call setpixel(xi,yi)
determine if case 1 or 2,4 or5 or 3
if  ri < 0 then
δ = 2ri + 2yi – 1
determine whether case 1 or 2
if  δ ≤ 0 then
call mh(xi,yi, ri)
else
call md(xi,yi, ri)
end if
else if ri > 0  then
δ1=2ri + 2xi – 1
determine whether case 4 or 5
if δ1≤0 then
call md(xi,yi, ri)
else
call mv(xi,yi, ri)
end if
else if ri =0 then
call md(xi,yi, ri)
end if
end while
        finish


Move horizontally
subroutine mh(xi,yi, ri)
xi = xi + 1
ri = ri + 2xi +1
end sub
Move diagonally
subroutine md(xi,yi, ri)
xi = xi + 1
yi = yi - 1
ri = ri + 2xi -2yi +2
end sub

Move vertically
subroutine mv(xi,yi, ri)
yi = yi + 1
ri = ri  -2yi +1
end sub

Example:  To illustrate the circle generation algorithm, consider the origin-centered circle of radius 8. Only the first quadrant is generated.

Solution:  initial calculations
xi = 0;
yi = 8
     ri = 2(1-8)
                  Limit =0
     Incrementing through the main loop yields
yi > Limit
continue
setpixel(0,8)
ri<0
δ=2(-14)+2(8)-1=-13
δ<0
call mh(0,8,-14)
x = 0+1=1
ri= -14 +2(1)+1=-11
yi >Limit
continue
setpixel(1,8)
ri<0
δ=2(-11)+2(8)-1=-7
δ<0
call mh(1,8,-11)
x=1+1=2
ri= -11 +2(2)+1=-6
yi >Limit
continue
setpixel(2,8)
continue

Setpixel i δ δ1 x y
       -14 0 8
(0 , 8)
      -11 -13 1 8
(1 , 8)
      -6 -7 2 8
(2 ,8 )
   -12 3 3 7
(3 , 7)
     -3 -11 4 7
(4 ,7 )
     -3 7 5 6
( 5, 6)
      1 5 6 5
( 6,5 )
              9 -11       7 4
(7 ,4 )
      4 3       7 3
(7 , 3)
    18 -7           8 2
(8 ,2 )
    17 19          8 1
(8 ,1 )
     18 17       8 0
(8 ,0 )



---------------------------------------------------------------------
Article By:
GV Prasad
Assoc. Professor
CSE Department 
Sphoorthy Engineering College

Sphoorthy Engineering College



No comments:

Post a Comment